学宝教育旗下公务员考试网站
网站地图     设为首页     加入收藏
当前位置:主页  >> 行测资料  >> 数量   
数量
2017年山东公务员考试行测技巧:排列组合中的分组分配问题
http://www.sdgwy.org       2016-11-29      来源:山东公务员考试网
【字体: 】              

  众所周知,行测考试题型多、题量大、时间紧,而数量关系这个模块则让人尤为头疼。其中涉及的数字推理,规律难寻,常常让人摸不到头脑;而数学运算题型,计算繁琐,容易出错,题目较多,也是块难啃的骨头。排列组合问题是行测数学运算中比较复杂的一类题型,需要掌握一定的数学基础知识以及各类解题方法,因此很多考生望而却步,某些排列组合问题看似非分配问题,实际上可运用分配问题的方法来解决。下面山东公务员考试网(www.sdgwy.org)就排列组合中的分组分配问题,谈谈该类题型做法。


  一、提出分组与分配问题,澄清模糊概念


  n个不同元素按照某些条件分配给k个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n个不同元素按照某些条件分成k组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。


  二、基本的分组问题


  例1 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?


  (1)每组两本.


  (2)一组一本,一组二本,一组三本.


  (3)一组四本,另外两组各一本.


  分析:(1)分组与顺序无关,是组合问题。分组数是=90(种) ,这90种分组实际上重复了6次。我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数,所以分法是=15(种)。(2)先分组,方法是,那么还要不要除以?我们发现,由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有=60(种) 分法。


  (3)分组方法是=30(种) ,那么其中有没有重复的分法呢?我们发现,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,不可能重复。所以实际分法是=15(种)。


  通过以上三个小题的分析,我们可以得出分组问题的一般方法。


  结论1: 一般地,n个不同的元素分成p组,各组内元素数目分别为m,m,…,m,其中k组内元素数目相等,那么分组方法数是。


  三、基本的分配的问题


  (一)定向分配问题


  例2 六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法?


  (1) 甲两本、乙两本、丙两本.


  (2) 甲一本、乙两本、丙三本.


  (3) 甲四本、乙一本、丙一本.


  分析:由于分配给三人,每人分几本是一定的,属分配问题中的定向分配问题,由分布计数原理不难解出:分别有=90(种),=60(种),=30(种)。


  (二)不定向分配问题


  例3六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法?


  (1) 每人两本.


  (2) 一人一本、一人两本、一人三本.


  (3) 一人四本、一人一本、一人一本.


  分析:此组题属于分配中的不定向分配问题,是该类题中比较困难的问题。由于分配给三人,同一本书给不同的人是不同的分法,所以是排列问题。实际上可看作“分为三组,再将这三组分给甲、乙、丙三人”,因此只要将分组方法数再乘以,即=90(种),=360(种) =90(种)。


  结论2. 一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数。


  通过以上分析不难得出解不定向分配题的一般原则:先分组后排列。


  例4 六本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种分法?


  分析:六本书和甲、乙、丙三人都有“归宿”,即书要分完,人不能空手。因此,考虑先分组,后排列。先分组,六本书怎么分为三组呢?有三类分法(1)每组两本(2)分别为一本、二本、三本(3)两组各一本,另一组四本。所以根据加法原理,分组法是++=90(种)。再考虑排列,即再乘以。所以一共有540种不同的分法。


  四、分配问题的变形问题


  例5 四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种?


  分析:恰有一个空盒,则另外三个盒子中小球数分别为1,1,2。实际上可转化为先将四个不同的小球分为三组,两组各1个,另一组2个,分组方法有(种),然后将这三组(即三个不同元素)分配给四个小盒(不同对象)中的3个的排列问题,即共有=144(种)。


  例6有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法有多少种?


  分析:先考虑分组,即10人中选4人分为三组,其中两组各一人,另一组二人,共有(种)分法。再考虑排列,甲任务需2人承担,因此2人的那个组只能承担甲任务,而一个人的两组既可承担乙任务又可承担丙任务,所以共有=2520(种)不同的选法。


  例7设集合A={1,2,3,4},B={6,7,8},A为定义域,B为值域,则从集合A到集合B的不同的函数有多少个?


  分析:由于集合A为定义域,B为值域,即集合A、B中的每个元素都有“归宿”,而集合B的每个元素接受集合A中对应的元素的数目不限,所以此问题实际上还是分组后分配的问题。先考虑分组,集合A中4个元素分为三组,各组的元素数目分别为1、1、2,则共有(种)分组方法。再考虑分配,即排列,再乘以,所以共有=36(个)不同的函数。


  通过以上的总结,相信各位考生对备战排列组合题型都有了一定的了解,想要熟练掌握做题技巧,还离不开大量的习题练习,希望考生们勤于练习,争取熟能生巧。

 

  更多解题思路和解题技巧,可参看2017年公务员考试技巧手册

手机扫一扫
加入公考提醒平台

微信名: 山东公务员考试网
微信号: sdgwy9999
功能介绍: 发布山东公务员考试招录信息,考生报考问题解答
教材
政策咨询
在线题库
广告合作
返回顶部
互动消息