方阵问题描述是许多人或物按横着排叫做行(竖着排叫做列)排成正方形(简称方阵),再根据排成的方阵,找出规律,寻求解决问题的方案。但目前出题中常有方阵的转换及变形,增加了题目的难度,对此,山东公务员考试网(www.sdgwy.org)提醒考生首先应该准确判断方阵的类型,搞清方阵中的一些量(如层数、最外层人数、最里层人数、总人数)之间的关系,解题时开动脑筋,运用相关公式用多种方法来解题。
我们可以把方阵问题当作是几何中的正方形来理解,长和宽相等。方阵分为实心方阵(中心区域没有空缺)和空心方阵(中心区域有空缺)两种。数学运算中方阵问题主要围绕方阵的层数、每层人数、总人数展开。在实心方阵和空心方阵中,大家必须熟练掌握一些很重要的结论,解题才能游刃有余。
1、在实心方阵中:
方阵总人数=最外层每边人数的平方
方阵每层总人数=每层每边人数×4-4
从外到内,每层每边人数依次减少2,每层总人数依次减少8(等差数列)
2、在空心方阵中:
方阵总人数,利用等差数列求和公式求解(首项=最外层人数,公差=-8)
方阵每层总人数=每层每边人数×4-4
从外到内,每层每边人数依次减少2,每层总人数依次减少8(等差数列)
总结我们不难发现,实心方阵和空心方阵中,求解每层总人数、每边减少的数量、每层减少的数量规律都是一致的,所以各位考生只需要区别开求解方阵总人数的方法。我们再通过几道例题来揭开方阵问题神秘的面纱。
【例1】有绿、白两种颜色且尺寸相同的正方形瓷砖共400块,将这些瓷砖铺在一块正方形的地面上:最外面的一周用绿色瓷砖铺,从外往里数的第二周用白色瓷砖铺,第三周用绿色瓷砖,第四周用白色瓷砖……这样依次交替铺下去,恰好将所有瓷砖用完。这块正方形地面上的绿色瓷砖共有( )块。
A.180 B.196 C.210 D.220
【解析】答案选D。实心方阵总共400,得出最外层的边数量为20,因为是绿白交替变换的,所以绿色瓷砖的每边依次变化数量为20、16、12、8、4,那么每边的总数依次为76、60、44、28、12,最终求和得出绿色瓷砖的总数为:76+60+44+28+12=220,故选D。
【例2】高中生参加体操表演,先排成每边16人的实心方阵,后来又变成一个四层的空心方阵,这个方阵最外层每边有多少人?
A、20 B、21 C、22 D、24
【解析】答案选A。变化前为实心方阵,总人数为16×16=256.变换后为四层的空心方阵,总人数利用等差数列求和公式求解。设最外层总人数为x,则第二层人数为x-8,第三层人数为x-16,第四层人数为x-24,x+ (x-8)+(x-16)+(x-24)=256,解得x=76, 那么最外层的边即为(76+4)/4=20,故选择A。
通过以上的总结,相信各位考生对备战方阵题型的方法都有了一定的了解,想要熟练掌握做题技巧,还离不开大量的习题练习,希望考生们勤于练习,争取熟能生巧。
更多解题思路和解题技巧,可参看2017年公务员考试技巧手册。