【例题】从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?
A.40 B.41 C.44 D.46
【例题】从12时到13时,钟的时针与分针可成直角的机会有多少次?
A.1 B.2 C.3 D.4
【例题】四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:
A.60 B.65 C.70 D.75
【例题】一车行共有65辆小汽车,其中45辆有空调,30辆有高级音响,12辆兼而有之.既没有空调也没有高级音响的汽车有几辆?
A.2 B.8 C.10 D.15
【例题】一种商品如果以八折出售,可以获得相当于进价20%的毛利,那么如果以原价出售,可以获得相当于进价百分之几的毛利?
A.20% B.30% C.40% D.50%
山东公务员考试网(http://www.sdgwy.org/)解析
【解析】C。成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类] ×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44。(附:这道题应用到排列组合的知识,有不懂这方面的学员请看看高中课本,无泪天使不负责教授初高中知识)
【解析】B。时针和分针在12点时从同一位置出发,按照规律,分针转过360度,时针转过30度,即分针转过6度(一分钟),时针转过0.5度,若一个小时内时针和分针之间相隔90度,则有方程:6x=0.5x+90和6x=0.5x+270成立,分别解得x的值就可以得出当前的时间,应该是12点180/11分(约为16分左右)和12点540/11分(约为50分左右),可得为两次。
【解析】A。球第一次与第五次传到甲手中的传法有:C(1,3) ×C(1,2) ×C(1,2) ×C(1,2) ×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3) ×C(1,1) ×C(1,3) ×C(1,2) ×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3) ×C(1,2) ×C(1,1) ×C(1,3) ×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步:
(1).在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种。
(2).因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中.当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种。
(3).同理,当第三次球回到甲手中,同理可得3×3×1×2=18种. 最后可得24+18+18=60种。
【解析】A。车行的小汽车总量=只有空调的+只有高级音响的+两样都有的+两样都没有的,只有空调的=有空调的-两样都有的=45-12=33,只有高级音响的=有高级音响的-两样都有的=30-12=18,令两样都没有的为x,则65=33+18+12+x=>x=2。
【解析】D。设原价X,进价Y,那X×80%-Y=Y×20%,解出X=1.5Y,所求为[(X-Y)/Y]×100%=[(1.5Y-Y)/Y]×100%=50%。