【例题】一辆车从甲地开往乙地,如果提速20%,可以比原定时间提前一个小时到达。如果以原速走120千米后再将速度提高25%则可以提前40分钟到。那么甲、乙两地相距多少千米?( )
A. 240 B. 270 C. 250 D.300
【例题】一次游行,参加总人数为60000人,这些人平均分为25队,每队又以12人为一排列队前进,排与排之间距离为1米,队与队之间距离为4米,游行队伍全长多少米?( )
A. 5071 B. 5067 C. 6067 D. 5607
【例题】一个人从甲地到乙地,如果是每小时走6千米,上午11点到达,如果每小时4千米是下午1点到达,问是从几点走的?
【例题】假设五个相异正整数的平均数为15,中位数为18,则此五个正整数中的最大数的最大值可能为( )
A.24 B.32 C.35 D.40
【例题】有101位乒乓球运动员在进行冠军争夺赛。通过比赛,将从中产生一名冠军。这次比赛实行捉对淘汰制。在一轮比赛全部结束后,失败者失去继续比赛的资格,而胜利者再次抽签,参加下一轮的比赛。问一共要进行多少场比赛,才能最终产生冠军?
A. 32 B. 63 C. 100 D. 101
山东公务员考试网(http://www.sdgwy.org/)解析
【解析】选B。令相距为x,原速为y,x/y=x/[(1+20%)×y]+1 120/y+(x-120)/[(1+25%)×y]+2/3=x/y=>(1/6)×x=y ;(1/5)×x=24+(2/3)×y=>x=270。
【解析】选A。60000/25=2400,即每队2400人,每12人一排,则每队有200排,共有199个间隔,即每队长199米,则25对共长199*25=(200-1)×25=4975米,共25队,间隔为24,则共间隔24×4=96,因此队伍共长4975+96=5071。
【解析】答案7点。设需要x小时6x=4(2+x) x=4 所以是7点走的。
【解析】C。15×5=75 因为问的是最大是多少,中位数是18 所以你可以用75-18-19-1-2=35。
【解析】选C。
思路一:先抽50次淘汰50剩下51,在抽25次淘汰25剩下26再抽13次淘汰13剩下13再抽6次淘汰6剩下7再抽3次淘汰3剩下4在抽2次淘汰2,剩下2个就 不用抽签了 总共抽50+25+13+6+3+2=99你的答案肯定按照最后剩下2个人也抽签来计算的。
思路二:最后冠军只有一个,也就是说淘汰了100名选手,即要淘汰一名选手就需要一场比赛,那么要淘汰这100个人必须要通过100场的比赛。