【例题】奥运五环标志。这五个环相交成9部分,设A-I,请将数字1-9分别填入这9个部分中,使得这五个环内的数字之和恰好构成5个连续的自然数。那么这5个连续自然数的和的最大值为多少。
A.65 B.75 C.70 D.102
【例题】一水库原有存水量一定,河水每天均匀入库。5台抽水机连续20天可抽干,6台同样的抽水机连续15天可抽干。若要求6天抽干,需要多少台同样的抽水机?
【例题】甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。求A、B两地间的路程。
【例题】一名个体运输户承包运输20000只玻璃管,每运输100只可得运费0.80元,如果损坏一只不但不给运费还要赔款0.20元,这位个体运输户共得运输费总数的97.4%,求他共损坏了几只玻璃管?
A.16 B.22 C.18 D.20
【例题】假设五个相异正整数的平均数为15,中位数为18,则此五个正整数中的最大数的最大值可能为(C)
A 24 B 32 C 35 D 40
山东公务员考试网(http://www.sdgwy.org/)解析
【解析】
方法一:题为5个连续自然数,可得出A+B+1=B+C+D B+C+D+1=D+E+F等,所以求五个连续自然数的和为5(A+B)+10;H+I最大值为8+9=17,所以A+B<17-4,A+B<13;5(A+B)+10<75 ;满足5个连续自然数的条件A+B>5+6 ;5(A+B)+10>65 ;所以得出答案为70
【解析】水库原有的水与20天流入水可供多少台抽水机抽1天? 20×5=100(台),水库原有水与15天流入的水可供多少台抽水机抽1天? 6×15=90(台),每天流入的水可供多少台抽水机抽1天?(100-90)÷(20-15)=2(台),原有的水可供多少台抽水机抽1天? 100-20×2=60(台);若6天抽完,共需抽水机多少台? 60÷6+2=12(台)
【解析】甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。两车同时出发同时停止,共行了3个全程。说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)。可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
【解析】20000/100×0.80×97.4%=155.84;
0.8×(20000-X/100)-0.2X=155.84,解得X=20
【解析】(一):因是最大值,故其他数应尽可能小,小的两个数可选1、2,比18大的一个选19,那么用15×5-1-2-18-19可得出这个数为35。(二)由题目可知,小于18的2个数字是1和2。所以得到大于18的2个数字和为 75 -18 - 2 - 1 = 54。要求最大可能值,所以另一数是 19 ,最后 最大值=54-19=35 。