【例题】一个人从甲地到乙地,如果是每小时走6千米,上午11点到达,如果每小时4千米是下午1点到达,问是从几点走的?
【例题】甲、乙两瓶酒精溶液分别重300克和120克;甲中含酒精120克,乙中含酒精90克。问从两瓶中应各取出多少克才能兑成浓度为50%的酒精溶液140克?
A.甲100克, 乙 40克
B.甲90克, 乙50克
C.甲110克, 乙30克
D.甲70克, 乙70克
【例题】小明和小强都是张老师的学生,张老师的生日是M月N日,2人都有知道张老师和生日是下列10组中的一天,张老师把M值告诉了小明,把N值告诉了小强,张老师问他们知道他的生日是那一天?
3月4日,3月5日,3月8日,6月4日,6月7日
9月1日,9月5日,12月1日,12月2日,12月8日
小明说:如果我不知道的话,小强肯定也不知道
小强说:本来我也不知道,但现在我知道了
小明说;哦,那我也知道了
请根据以上对话推断出张老师的生日是那一天
【例题】一次数学竞赛,总共有5道题,做对第1题的占总人数的80%,做对第2题的占总人数的95%,做对第3题的占总人数的85%,做对第4题的占总人数的79%,做对第5题的占总人数的74%,如果做对3题以上(包括3题)的算及格,那么这次数学竞赛的及格率至少是多少?
【例题】小明早上起床发现闹钟停了,把闹钟调到7:10后,就去图书馆看书。当到那里时,他看到墙上的闹钟是8:50,又在那看了一个半小时书后,又用同样的时间回到家,这时家里闹钟显示为11:50.请问小明该把时间调到几点?
山东公务员考试网(http://www.sdgwy.org/)解析
【解析】方法一:4×2/2=4小时。由每小时走6千米,变为每小时4千米,速度差为每小时2千米,时间差为2小时,2小时按每小时4千米应走4×2=8千米,这8千米由每小时走6千米,变为每小时4千米产生的,所以说:8千米/每小时2千米=4小时,上午11点到达前4小时开始走的,既是从上午7上点走的。
方法二:时差2除(1/4-1/6)=24(这是路的总长)24除6=4。
【解析】甲的浓度=(120/300) ×100%=40%,乙的浓度=(90/120) ×100%=75%,令从甲取x克,则从乙取(140-x)克,溶质不变=>x×40%+(140-x) ×75%=50%×140=>x=100,综上,需甲100,乙40。
【解析】1、小明说:如果我不知道的话,小强肯定也不知道,对于前半句,这个条件永远成立,因为所有的月份都有至少两个,所以小明无法确定,对于后半句,这个结论成立的条件是,小明已经知道不是6月和12月,不然不可能这么肯定的说出 “小强肯定也不知道”。 2、小强说:本来我也不知道,但是现在我知道了 首先他读破了小明的暗语,知道了不是6月和12月,而他又能确定的说出他知道了,表明不可能他知道的日期是5号,因为有3.5和9.5两个。所以只剩下3.4 3.8和9.1了 。3、小明说:哦,那我也知道了,他也读破了小强的暗语,知道只剩3.4 3.8和9.1了,他能明确表示是"那我也知道了",则必然是9.1 。6月7日,12月2日这两个日期的日子只有一个。小明肯定的话就不可能出现这两个了。所以不可能是6月和12月。
【解析】方法一:设总人数为100人。则做对的总题数为80+95+85+79+74=413题,错题数为500-413=87题,为求出最低及格率,则令错三题的人尽量多。87/3=29人,则及格率为(100-29)/100=71%
方法二:解:设:这次竞赛有X参加.80%x+95%x+85%x+79%x+74%x=413x
500x-413x=87x,87=3×29,(100-29) ×100%=71%
【解析】首先求出路上用去的时间,因为从家出发和回到家时,钟的时间是知道的,虽然它不准,但是用回到家的时间减出发时的时间就得到在路上与在图书馆一共花去的时间,然后再减去在图书馆花掉的1个半小时就得到路上花去的时间,除以2就得到从图书馆到家需要的时间。由于图书馆的8:50是准确时间,用这个时间加上看书的1个半小时,再加上路上用去的时间就得到了回到家时的准确时间,应该按这个时间来调整闹钟。所以:从家到图书馆的时间是:(4小时40分-1个半小时)/2=1小时35分, 所以到家时的准确时间是8:50+1个半小时+1小时35分=11:55, 所以到家时应该把钟调到11:55。