【例题】 足球赛门票15元一张,降低后观众增加了一半,收入增加了五分之一,则一张门票降价()元。
A.5 B.4 C.3 D.2
【例题】某种考试已举行了24次,共出了试题426道,每次出的题数有25题,或者16题,或者20题,那么其中考25题的有多少次?()
A.4 B.2 C.6 D.9
【例题】小明和小红积极参加红领巾储蓄活动,把零用钱存入银行。小明存入银行的钱比小红少20元。如果两人都从银行取出12元买学习用品,那么小红剩下的钱是小明的3倍。问两人原来共存入银行多少元?()
A.44 B.64 C.75 D.86
【例题】某年级组织一次春游,租船游湖,若每条船乘10人,则还有2人无座位;若每条船乘12人,则可少用一船,且人员刚好坐满,这时每人可节省5角钱。问租一条船需要多少钱?()
A.9元 B.24元 C.30元 D.36元
【例题】3种动物赛跑,已知狐狸的速度是兔子的2/3,兔子的速度是松鼠的2倍,一分钟松鼠比狐狸少跑14米,那么半分钟兔子比狐狸多跑()米。
A.28 B.19 C.14 D.7
山东公务员网(http://www.sdgwy.org/)解析
【解析】C。设降价x元,原观众人数为a,收入为b,由题意可得:15a=b,(15-x)×(a+a/2)=b+1/5b,故x=3。
【解析】B。假设24次考试,每次16题,则共考16×24=384(道),比实际考题数少426-384=42(道),也就是每次考25题与每次考20题,共多考的题数之和为42道,而考25题每次多考25-16=9(道),考20题每次多考20-16=4(道)。这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据数的奇偶性可知,B无论是奇数还是偶数,4B总是偶数,那么9A也是偶数,因此A必定是偶数,且A不是2就是4。如果A=4,则9×4+4×B=42,B=1.5不合题意,应删去,所以考25道试题的次数是2次。
【解析】B。设小明存入银行x元,则小红存入银行(x+20)元。由题意可得:(x-12)×3=(x+20)-12,故x=22。所以两人原来共存入银行22+(22+20)=64(元)。
【解析】D。设船数为x,则10x+2=12(x-1),故x=7,所以人数为7×10+2=72,由“每人可节省5角钱”可得一条船的租金是72×5=360(角)=36(元)。
【解析】C。由题意可得:兔子速度:松鼠速度:狐狸速度=6:3:4,又因为“一分钟松鼠比狐狸少跑14米”即半分钟松鼠比狐狸少跑7米,所以令半分钟兔子、松鼠、狐狸分别跑6a、3a、4a,4a-3a=7,故a=7,所以半分钟兔子比狐狸多跑6×7-4×7=14(米)。